Saturday, November 23, 2024

Frozen in the Spotlight: Scientists from the Gwangju Institute of Science and Technology Develop Catalyst that Turns Off when Illuminated

In an effort to develop catalysts that allow better spatiotemporal control of chemical reactions, scientists from the Gwangju Institute of Science and Technology have developed a novel “smart” catalyst that deactivates under UV illumination. This feat was achieved by strategically combining a well-known ruthenium catalyst with azobenzene, a photo-responsive organic compound. Their findings pave the way to new modes of photolithography and cooperative catalyst systems, the latter of which could be used for synthesizing sophisticated chemicals.

Also Read: AcelRx Pharma Highlights Advantages of the Sufentanil Sublingual Tablet in Joint Replacement Surgery

Catalysts are compounds that enable and accelerate desired chemical reactions without themselves degrading and are pivotal in virtually all of applied chemistry. Over the past few decades, many researchers have sought to develop so-called ‘smart’ catalysts to facilitate the synthesis of sophisticated chemicals. In general, the reactivity of smart catalysts can be controlled by applying an external stimulus, such as by lowering the temperature or increasing the acidity of the medium, making them much more versatile tools than conventional catalysts.

In a recent effort to bring a new smart catalyst to the table, scientists from the Gwangju Institute of Science and Technology in Korea focused on a peculiar organic molecule called azobenzene. This compound undergoes a reversible change in structure when illuminated with light of a certain frequency. Even though this property had been already exploited to design light-sensitive polymers and proteins, very few have explored its potential for designing smart transition-metal catalysts. Thus, the research team, led by Professor Sukwon Hong, tried introducing azobenzene into cyclic(alkyl)(amino)carbene-ruthenium (CAAC-Ru), an established catalyst widely used in olefin metathesis reactions for the production of drugs, cosmetics, and other complex chemicals. Their study was published in ACS Catalysts.

They strategically modified CAAC-Ru so that the active ruthenium site would be either more or less exposed to the reactants depending on the shape adopted by the inserted azobenzene group. In this way, they produced a pair of photoswitchable catalysts with a twist, as Prof. Hong explains: “In contrast with previously reported photo-responsive catalysts for which light turns on the catalytic reaction, our catalysts exhibit the opposite behavior; that is, they deactivate when illuminated with ultraviolet (UV) light, offering a new mode of photoswitching.” The team also demonstrated the reversibility of the photoswitching mechanism through further experiments, showing that the reactions can be repeatedly turned on and off by simply switching the UV light source.

Subscribe Now

    Hot Topics