As global sustainability and clean energy megatrends impact how we approach energy strategies toward a greener future for the planet, renewable technologies such as wind and solar are leading areas of focus for research. In the solar technology space, the emerging field of perovskite solar cells (PSCs) has gained popularity within the last decade and a half.
Also Read: Messer to Meet Growing Demand with New Air Separation Unit in McGregor, Texas
However, in a field dominated by silicon solar cells, the relatively new technology of perovskite solar cells must besides offering high power conversion efficiencies (PCEs) also meet two other crucial requirements to be successfully commercialized: stability and scalability.
In a recently published Science paper, KAUST researchers have reported a significant milestone through the first-ever successful PV damp-heat test of PSCs.
The damp-heat test is an accelerated and rigorous environmental aging test aimed at determining the ability of solar panels to withstand prolonged exposure to high humidity penetration and elevated temperatures. The test is run for 1,000 hours under a controlled environment of 85% humidity and 85 degrees Celsius. It is meant to replicate multiple years of outdoor exposure and evaluate factors such as corrosion and delamination.
Passing the test
The harshness of the test is in line with commercialization requirements of photovoltaic (PV) technology needing to cover 25 to 30 years of warranty for conventional crystalline-silicon modules. In order to pass the test, the solar cell has to maintain 95% of its initial performance.
Led by Randi Azmi, a postdoctoral fellow in Stefaan De Wolf’s KAUST Photovoltaics Laboratory, their research had to overcome an enduring weakness in encapsulated PSCs to prevent packaging leakage. This vulnerability of 3D perovskite films is what allows the unwanted infiltration of atmospheric agents and offers limited resilience against heat. The solution found by the KAUST researchers is the engineering and introduction of 2D-perovskite passivation layers to simultaneously enhance the power conversion efficiencies and lifetime PSCs.